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ABSTRACT

The analytical modelling of crecp response phenomena of intervertebral discs
subjected Vo a constant axial compressive load is attempted ty using Kelvin-solid
models. A mathematical analysis scheme is proposed for unique model identification
wherein exact parameter solutions are developed for the one-Kelvin-unit model, the
three-parameter-solid model, and the two-Kelvin-unit model. In addition, a method
is presentod by which the associated Young's moduli and viscosity coefficients for
an identified model are obtainablc. Most importantly, unique parameter values are
obtained for the three-parameter-solid by utilizing exact model parameter solutions
on experimental strain, € (t), data. This particular model is observed to yield
theoretical strain, € (t)cal' values that are within an average error of 3.48% of
tho experimentally measured values, € (t)exp’ for different intervertcbral discs.
Further, mechanical properties of the intervertcbral discs are obtained by using
the values of the three-parameter-solid model parameters to calculate the asso-
clated Young's modull and viscosity coefficient. The appropriate applications,
data limitations, and possible generalizations of this exact analysis scheme are

fully discussed, along with suggestions for future investigatory efforts.
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INTRODUCTION

An understanding of the mechanical properties and behavior of the spinal col-
umn is of general interest to researchers in many areas, ranging from problems as-
sociated with the man-machine environmerts in which man is subjected to external
dynamic forces to those encountercd in the selection of suitable materials for in-
tervertebral disc replacement, Of particular interest to this investigation is the
bicmochanical modelling of intervertebral joint response to constant axial compres-
sive loads, where an intervortebral joint is underetood to be an intervertebral
disc and adjoining vertebrae,

Nachemson (1960), Hirsch (1965), and Rolander (1966) performed experimental
investigations to dctermine the load-deflection behavior of the intervertebral disc
subjected to axial loading. lMore recently, Kazarian (1975) reported creep charac-
teristics for intervertobral joints subjected to a constant axial stress, and
Kazarian and Kaleps (1979) illustrated the determination of Young's moduli and a
viscosity coefficiont for a threc-parameter-solid model based on this data.

A basic problem associated with the modelling of experimontal compressive creep
data is the identification of the most physically appropriate and analytically
uniquo modecl. A lumped-parameter model consisting of a number of Kelvin solids in
series may bo sufficient in simulating experimentally observed creep phenomena.
However, the number of Kelvin solids represented in such a model is genorally de-
pendent on the analytical and phyuical intuition of the investigator and his wil-
lingnoss and capability of identifying the values of unknown, independent model
paramoters via optimization techniques using the available experimental data.

One objective of this continuing research is to replace investigative intu-
ition with analytical certitude in model identification. The cxact mathematical
solutions to a logical progression of mochanical models that are appropriate for
experimental creep data analysis are presented and fully discussed, Due to the
inhorent mathematical complexity of the sxact solution approach to model identi-

. T e

fication for a Kelvin chain consisting of more than three Kelvin solids, approx-

imating solutions appear warranted for the generalized basic problem. Tha reenlta i
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presented herein for three diffcrent analytical models can be easily programed on
& digital computer to test experimentally measured creep data for unique model
idontification and to calcula*e the associated Young's moduli and viscosity coef-

ficients for an identified model.,

ON MODELLING COMPRESSIVE CREEP PHENOMENA WITH KELVIN SOLIDS

Typical experimental compressive creep data of strain &€(t), as illustrated
by the dotted curve in Fig. 1 aftor Kszarian (1975), exhibits behavior which is
similar to that of a Kelvin solid, where a one-Kelvin-unit £0lid is understood to
be a spring and dashpot in parallel. Indeed, it is being suggested that a Kelvin
chain, consisting of two or more Kelvin elements connected in series, might be
sufficient to simulate compressive creep phenomena, The problem, of course, is to
identify the minimum number of Kelvin units in the chain and to determine the in-
dopendent parameter values associated with each Kelvin elemsnt, such that the pre-
dicted strain values of the Kelvin chain model ars in good agreement with avail-
able experimental croep data,

The general solution for the strain behavior of an N-Kelvin-unit solid is
given by Flugge (1975) as

€(t) =:i; AL -0 1Y, )

which would appear to be a logical test of the oxperimental compressive creep data,
When a computerized optimization scheme employing Eq. 1 was applied to Kezarian's
creep data for the T4 - TS5 intervertebral joint, one value of N yielding a "rea-
sonably" good fit occured for N = 5, A plot of the calculated strain € (t)cal
values using a five-Kelvin-unit model is illustrated in Fig. 1 by a s0lid line,
Clearly, after the first few minutes, the exporimentally observed strain response
is rather well predicted by the five-Kelvin-unit model, Although this result ap-
pears encouraging, further investigation revealed that the values used for the ten
paramoters (2.1, A3 121,234 5) wero not unique. That is, these values
could be altered slightly, or even drastically, with a resulting "reasonably good
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fit" to the coxperinmental creep response data, This alarming observation suggests

that another model, perhaps simpler, might yield a unique fit to the experimental
| data. Onco this modelling uncertainty was rcalized, no further effort was made to
| improve the optimization scheme used to identify the parameter values with respect
to the experimental data. Further, it is suggested that the use of such a model,
although instructive, is of questionable value., It is generally felt that "gues-
| sing" at parameter values, which is inherent in any computerized optimization

scheme, should be avoided, if at all possible,

From this preliminary modelling attempt, the assumption that a Kelvin chain

‘ might be sufficient in simulating compressive creep response of intervertebral

| discs appearcd reasonable, The immediate task was to uniquely identify the appro-
priate number of Kelvin elements in the Kelvin chain and the model parameter values
by & more exact mathematical method. To this cnd, an analytical scheme is proposed
wherein cxact parameter solutions are derived for a few illustrative models. To be
more specific, exact parametor solutions are developed for the one-Kelvin-unit
model, the threo-parameter-solid model, and the two-Kelvin-unit model, along with a
discussion of their appropriate applications and limitations when used to analyze
experinental strain data,

EXACT PARAMETER SOLUTIONS TO THE ONE~KELVIN-UXIT MODEL
The one-Kelvin-unit model, schematically represented in Fig. 2, is a linear 3
1 model, since the strain behavior is directly proportional to the applied stress,
| Taking El and 7(1 as representing Young's modulus and the coefficient of viscosity,
respectively, the total stress applied, /ns » can be expressed by
{ =B € + NE zq€ -qf, (2)
where the dot denotes time-differentiation and the sscond eguality is just the

standard form for the total stress. B, and ¥, are related to the unit elasticity, |
~ k‘.l.’ and damping coofficient, Cy» by the equations ;
d ; E =k A/ (3
1
and n] = c]./Q/A, {4) Q ,




where ), is the initial length and A is the effective cross-sectional area of the
specimer, For a constant stress 4

T z0gt20, (5)
the solution for the strain, € (t), to the constitutive equation, Eq. 2, under the
condition of creep may be expressed by

€(t) = ggit), (6)
where J(t) is the creep compliance. According to Fligge (1975), the creep compli-
ance for this model is given by

3t) = (1/g)A - 6~ 11%), . 7)
! where the parameter is
| A, =q/q). (8)
Combining Eqs. 6 and 7, the solution for the strain behavior of the Kelvin solid
can be represented in the general form

€(t) = a1 - 0" 11Y), (9

where 2.1 and Al are independent parameters requiring determination for the com-

plete cpecification of €(t). At this point, using Egs, 3, 6, 7, 8, and 9, it is
easily shown that
E) = Jg/A (10)

Clcarly, Eqs. 10 and 11 can be utilized in determing Young's modulus, E,, and the

1’
viscosity coefficient, )11, once unicue values for the parameters 21 and Al are
Obt&inedo

Assuming this simple model can be used to analyze observed compressive creep

phenomena, then the experimental data for € (t) and t may be expressed in the form

{ 61 L Al(l -e zlti)o (12.1)

€01 = A1 =07 zlti*l). (12.2) |

Even though these two equations involve only the two unknown parameters 11 and

" Ay, their exact solution is not trivial, unless we use an "interpolation trick".
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That is, interpolation of the physical data can always be accomplished such that

MmNt Nt M T A e T M) P Y (13)

where 2’ is a "emall time increment". Using the requirement of Eq. 13 with Egs.
12,1 and 12.2 and generalizing ylelds
- -
Eir - € =he” 1M1= e vy, (14.1)

-11&(1 e AT )e-ll?f’ (S}

€ie2 = &4y = A0
vhere the left-hand-side of each equation represents the difference between two con-
secutive oxperimental strain values. The exact solutions for the model parameters
2.1 and A, are irmediately obtained in terms of the experimental strain data by si-
multancously solving Eqs. 14.1 and 14.2:

Ay = (/2NN €y g - €€y, = €10 (15)
A = (€ €y, - EL/E, - 264, + €4,0) (26)
It should be ezphasized that the model parameter solutions of Eqs. 15 and 16 are

dependent on only the experimentally obtained strain, €(t), data and can be easily
employed by a simple computer program to analyze such data, If indeed this model is
appropriate for the analysis of any type of experimental strain data, then Egs. 10
and 11 can be utilized to predict the mechanical properties. Unfortunately, when
this simple model was used with the experimental strain data of Kazarian (1975), no
unique valucs for 11 and A, were realized. A minimization scheme using the exact
parameter solutions of Eqs. 15 and 16 could be developed for a more complete analysis
of the experimental data; however, the characteristics of the Kazarian (1975) creep
responce data suggests that a more complex model is rcquired. Since the experimental
data graphed in Fig. 1 revecals an elastic response initially, followed by a visco-
elastic response, then perhaps a spring placed in serics with a Kelvin unit would be
appropriate as the next model to investigate.

EXACT SOLUTIONS TO THE THREE-PARAMETER-SOLID MODEL

A three-paramcter-solid model is illustrated in Fig. 3 as a Kelvin unit and
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spring connected in sories. Allowing that 711, F’l’ and E2 are related to s kl’
and kz, respectively, by oquations similar to Eqs. 3 and 4, then the constitutive
equation for the total stress applied can be derived in the form

e CHIAE) + )6 =(BEL/(E) + BIE + (ME/E, + EE, (A7)
where the dot denotes time-differentiation. Eq. 17 can be written in the normalized
form as given by Flugge (1975),

(]

¢+p0r=q€+qt, (18)
by simply defining

P s 71.1/(31 L 4 Ez). ' (19)
The general solution for the strain of Eq. 18 is again represented by Eq. 6, only
now the creep compliance, as given by Fligge (1975), is

-4t -2t

I(t) = QA/g N1 -e ) + (py/a))e 7, (22)
with A= qo/ql. (23)
From Eqs., 6 and 22, a general form for the strain solution can be expressed by

- At -At

E(t)= a1 -e "17) +a3e 71, , (24)
where the model parameters }Ll, A and A, are given by

A, =9,/9, (25)

Al = d;/qon (26)

Az & ohopl/q]: (27)
Using these three equations with Eqs. 19, 20, and 21 allows for the determination
of Young's moduli, E; and E,, and the viscosity coefficient, 711, in terms of the
unknown mcdel parameters:

Ey = 6.;/(1\1 - A2); (28)

E, = 07/A,, (29)
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Ny = 0o/ Aq(Ay - A)) = E) /2. (30)

As before, values for the model parameters must be uniquely determined by analyzing
the experimentally available strain data,
Using Eq. 24 as the model "data equation", then any three consecutive strain

data values oboying the interpolation requirement of Eq. 13 can be represented by

ei. = a1 - e~ xlti) + Aze- ;th'i, (31.1)
611-1 = &(1 - o 2'lt'ie. ;\l?f) + Aze- zltie- Alz, (31.2)
€, = A (1 - - 182 T Pty Y (31.3)

Exact solutions for the three model parameters are now obtainable in terms of the ex-
perimental strain data by solving the above three-equations simultaneously. The
results for ﬁj_and A, are identical to those given by Eqs. 15 and 16, respectively,
and A2 can be expressed by
-At At
Ay= (€ = A(1 =0 17i))e 174, (32)

Kazarian and Kaleps (1979) recently analyzed compressive creep phenomena using
2 three-parameter-solid model described by an equation like Eq. 24, Their results
for the Young's moduli and the coefficient of viscosity for a few intervertecbral
joints are given in Table 1 as EI, E;,
ployed various approximations and optimization schemes, the predicted strain values,

and 72{. By their analysis scheme, which em-

6"“1)“1, compared favorably with the oxperimental strain data, € (ti)exp’ ranging
from about 1% to 154 with about a 5% average.

When the exact parameter solutions developed herein were employed to analyze
the Kazarian (1975) data, unique parameter values were obtained for the inierverte-
bral joints considered in Table 1. The results for the Young's moduli and the vis-
cosity coefficient are indicated in Table 1 as E;, E,, and Ny, and agree favorably
with the results predicted by Kazarian and Kaleps (1979). When the first three ex-

perimental strain values (elastic response) are eliminated from the data points as-

sociated with each spinal segment, the exact analysis scheme predicts strain values,
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e'(ti)cal’ that are within an average of 3.48 % of the experimental data, € (ti)exp’
for the twenty spinal segments considered. For each spinal segment considered, the

naverage of the absolute % error, E," is defined by

N
£ 2 /02 a[(CECk ), = €Cu) )/ €))7, (3)

cal
and is observed to be rather small with the exception of test I. D, No. 1 and 16,
With these two gpinal segments eliminated, the predicted strain valuss, e‘(ti)cal’
are within an average error of 2.2l % of the experimental data, € (ti)exp’ for the
remaining eighteen spinal segments, For these intervertebral joints, a graph of
strain versus tims for € (t;).,; will be, essentially, superimposed on the corres-
ponding graph of € (ti)cxp’ except for, approximately, the first three strain values.
Inclusion of the first three predicted strain values for each spinal segment
results in an average discrepancy of &% between € (t.i)cal and € (ti)exp for the
twenty intervertebral joints of Table 1. It should be noted that the exact param-
eter eolutions are very sensitive to the experimental strain values and, thus,
eritically dependent on the smoothing and interpolation programs employed to reduce
the original data. Certainly, an optimization scheme utilizing calculated param-
ster values could be developed for a more complete analysis of the experimental
data, in an attempt to obtain closer agreement between € (ti)cal and € (ti)exp for
the first three data points of each intervertebral joint., However, the compressive
creep datum analyzed tends to suggest that a slightly more complex model may be

required for improved agreement between theoretical and experimental predictions.

EXACT PARAMETER SOLUTIONS TO THE TWO-KELVIN-UNIT MODEL
The constitutive equaticn for the two-Kelvin-unit solid, as illustrated in
Pig. 4, can be expressed in the normalized form as
&4 py0" 2 € + af + a, (34)
whero the dot denotes time-differentiation. The stress and strain coefficients of
Eq. 34 are related to Young's moduli, El and Ez, and the viscosity coefficients,

nl and 722, by the following equations:

T - -




py = (N + W/NE) +Ey),

q, = ElEz/(El + 82),

q = (NE, + NE)/(E +E,),
ay = Ny N/(E, + E,).

The general solution to Eq, 34 for the strein, as given by Fligge (1975), is

€ (t) = gga(t) = 0(1 + pyA) )L - °-z1t)/q211(12 -2)

PO+ p A - 628 /0,20 - 2,), (39)

where Xl and 22 are the roots of

2 -

9 X" - a2 +q =0, (40)
Taking 2, as the negativo root and 2, as the positive root of Eq. 40, and

A = (e pAy) /a2 (2, - 2)), (42)

Ay = 01+ piR,)/0,2,(2; - 2,)s (42)
then the general solution for the strain behavior can be expressed by

Ayt -t
€ (1) = a2 - 0% 4 a0 - 75, (43)

Young's moduli and the viscosity coefficients can be related to the four parameters

ob Eq. 43 by using Egs. 35, 36, 37, 38, 40, 41, and 42:

-
O

By = (A, = A))/(M( + R) + 20,2,), (4)
E, = (R = L)/(A(A + 2) + 242,), (45)
N = E/Ry (46)
N, ZE,/2,. (47)

| Again, values for the four model parameters must be uniquely identified by analyzing
the experimentally obtained compressive croep data.
Taking Eq. 43 as representative of the "experimental data", then the four data

; ‘ equations necessary for the exact solution of the model parameters are of the form




) AT, -
€in =6, »hili - W s n - TR (48.1

~ .
. . -

€ g0 = €a43 =42 - o 1he i, T L - et (s,

where the "time interval" requirement of Eq. 13 has been incorporated. Solving Eqgs.

48.1 to 48.4 simultaneously and defining

E_u_a g Giﬂ = G i+(j-l)’ 3 = 1’ 2: 3: I#; (109)
glves the paramoter solutions in the form
o -A t" 2
s - € (1= ™) - g () - eNE) , (50)
1 (\ _Q-Ame-;.rt)“_e-ut() - (1-eMt ) e Rt gn AT
=A%ty A e
e e (1-e"'te ‘%-em(t—c"' ') ) (51)
(l _G'AT*" e-AlT)(e’)-zt") - (\__ e‘llt‘ )(l o e’kz‘t‘ e‘ﬂ.;'r)
:
= (B2 . w 2AT, (o - -7 2
02 (Bypn = BioaBiys)e * (BB, = By B g)e ¢ (EBp 5 = E LE, . )x(52)

where 11 is the negativae root and 22 is the positive root of Eq. 52.

When the compressive croep data of Kazarian (1975) was analyzed by the above
paramater equations, no unique set of values for 21, 22, Al, and A, was obtained.
Some calculated values appeared rspetitively as the experimental data was tested,

but it was not possible to identify a "unique set" of parameter values for any

-
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intorvertebral joint. As such, use of the two-Kelvin-unit solid as an analytical

model was ssriously questioned.

CONCLUSION
The analytical modelling of compressive orcep data by Kelvin solids has been
considered. Unique model parameter solutions are accomplished by a mathematical

scheme, which has been fully illustrated for the two, three, and four-parameter

} solids., The first and last models discussed are not capable, by themseives, of
predicting observed compressive creep phenomena; however, successful modelling of

| J the experimental data appears possible by using the three-parameter-solid model or




more complex Kelvin chains., More precisely, tho five-paramcter-solid model is sug-

gosted as the next logical model to davelop. It is expected to yleld a better fit
to tho experimental compressive crecp data for the entire time-domain than the three-

parameter-solid model. Exact parameter solutions, of the type discussed herein,

have not been obtained for a Kelvin chain consisting of three or more Kelvin elements.
L Tt is suggested that any such derivational atteapts will be intimidated by the math-
ematical complexity and uncertainty arising from the algebraic solutions. It should,
F however, be possible to develop a gensralized approximating scheme, utilizing the
| equations presented herein, which is capable of identifying a unique model for the
prediction of compressive creep response, Further, it should be realized that ex-
porimental data analyzed by this type of method should be carefully smoothed and in-
terpolated, because of the sensitivity of the equations representing the exact so-
lutions for the model paramsters.

The implications of this report are that with improved computer programs per-
taining to intorpolation, mmoothing, and analysic models (development of the five-
parameter-solid modol), all of Dr. Leon E. Kazarian's experimental data on the load-
deflection behavior of intervertebral joints can be quickly, efficiently, and ac-
curately reduced via exact parametric solutions, with associated Young's moduli and

viscosity coefficients obtained., Such an accomplishment would represent the most

authorative research results cn intervertebral joints to date and should become the

primary reference for investigators associated with problems ranging from the man-

machine environments to those encountered in the selection of suitable materials

for disc replacement,
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Figure 1

A comparison of the experimental compressive creep response
for the human T4 - T5 intervertebral joint, by Kazarian, with }
the predictions of a 5-Kelvin-unit model, by Burns and Kaleps.
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Figure 2

The one-elvin-unit solid,
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The three-~parameter solid,







Figure 4
The two-Kelvin-unit solid,
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Table 1

A comparison of the Kazarian and Kaleps (1979) Young's moduli
(E‘i’, Es) and viecosity coofficient (72?) for intervortebral
Joints is made with those predicted by Burns and Kaleps and
represented by E,, E,, 7, respectively. A comparison of the
predicted strain values, € (ti)cal’ of the Burns and Kaleps
exact analysis scheme with the strain values obtained experi-

mentally, € (ti)exp, by Kazarian (1975) is represented as an
"average of the absolute ¥ error", where the first three strain

data values for each intervertebral joint has been eliminat.d.
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